1. 目的

数種類の金属材料についての引張試験と圧縮試験を行う.引張試験は板材について行い, 降伏点または0.2%耐力,引張強さ,一様伸びおよび破断伸びを求める.荷重 伸び線図か ら真応力 真ひずみ(対数ひずみ)線図(塑性曲線あるいは加工硬化曲線という)を求めて, 降伏応力がひずみともにどのように増大するか(加工硬化するか)を知る。引張試験ではく びれと破断が生じるため,与えられるひずみに限界がある.そこで,棒材について圧縮試験 を行い,もっと大きなひずみまでの塑性曲線を求める.以上により,金属材料の加工硬化特 性が材料によってどのように異なるかを実感するとともに,塑性曲線の意義を理解する.

2. 板の引張試験

2.1 供試材料

公称板厚 0.5mm または 1.0mm の 8 種類の板材;

アルミニウム A1050P-O アルミニウム A1050P-1/2H 冷間圧延鋼板 SPCC-B 冷間圧延鋼板 SPCE-D ステンレス鋼版 SUS430 ステンレス鋼版 SUS304 鋼板 C1100P-1/4H 黄銅板 C2600P-1/4H

2.2 試片寸法とその変化

図 1 のように,当初の板厚 t_0 ,幅 w_0 ,標点距離(伸び計の支点間隔) $\ell_0 = 50.0mm$ である.変形中の板厚t,幅w,標点距離 ℓ とする.

2.3 荷重 伸び線図

オルセン式万能試験機により荷重 P -伸び $(\ell - \ell_0)$ 曲線を記録する. 引張速度はおよそ 0.5 [mm/s]である.

2.4 公称応力 s と公称ひずみ (慣用ひずみ) e

公称応力:
$$s = \frac{P}{A_0} = \frac{P}{t_0 \cdot w_0}$$
, 公称ひずみ: $e = \frac{\ell - \ell_0}{\ell_0}$ (1)

2.5 真応力 と真ひずみ(対数ひずみ)

真応力:
$$\sigma = \frac{P}{A} = \frac{P}{t \cdot w}$$
, 真ひずみ: $\varepsilon = \ln\left(\frac{l}{l_0}\right) = \ln(1+e)$ (2)

塑性変形では, 寸法変化に比べて体積の変化は無視できるほど小さいので, $t_0 \cdot w_0 \cdot \ell_0 = t \cdot w \cdot \ell$ (3)

よって, $d_s \ge e$ から次式で計算される.

$$\sigma = \frac{P}{t \cdot w} = \frac{P}{t_0 \cdot w_0} \cdot \frac{t_0 \cdot w_0}{t \cdot w} = \frac{P}{t_0 \cdot w_0} \cdot \frac{\ell}{\ell_0} = s(1+e)$$
(4)

ただし,式(3),(4)は標点間が一様に変形していることを前提にしている.くびれが発生して,*t*や*w*が一様でなくなったら,式(3),(4)は適用できない.

2.6 結果の整理の仕方

- (1)荷重 伸び線図から降伏点 s[MPa],降伏点が明瞭でない場合には耐力(0.2%の永 久ひずみを生じる公称応力) 0.2[MPa],引張強さ(公称応力の最大値) B[MPa], 一様伸び(荷重が最大となった時点の公称ひずみ)eu[%]および破断伸び(破断した 時の公称ひずみ) [%]を求める.
- (2)荷重 伸び曲線上から適当に8点を選び,s,e, , を計算し,8種類の板の真応力 真ひずみ線図(塑性曲線)を一枚のグラフにまとめて描く.
- (3) それを両対数方眼紙にプロットする.

ひずみがある程度大きくなると,点がほぼ一本の直線に乗ってくる.両対数グラフで直線 近似できれば, との関係式は,

> $\sigma = C \cdot \varepsilon^n$ (5) (C: 塑性係数, n: 加工硬化指数)

対数グラフ上では、

$$(5) \Leftrightarrow \log_{10} \sigma = \log_{10} C + n \log_{10} \varepsilon$$
 (6)

式(6)より,得られた直線の切片より塑性係数Cが,傾きより加工硬化指数nが求まる.

3. 圧縮試験

3.1 供試材料

引張試験とは別の 8 種類の直径 10mm の丸棒; アルミニウム A1100BE-F 焼きなました機械構造用炭素鋼 S15C R 焼きなました炭素鋼 S25C R 焼きなました炭素鋼 S45C R 焼きなまし前の炭素鋼 S25C - A ステンレス鋼 SUS430-F 銅 C1100BE-F 銅 C1100BE-O

3.2 応力とひずみ

図 2 のように,当初の直径 $d_0 = 10mm$,高さ $h_0 = 15mm$ の円柱が軸方向に均一に圧縮されて,直径 $d(>d_0)$,高さ $h(< h_0)$ となったとする.その時点の荷重を P とする.

公称応力:
$$s = -\frac{P}{A_0} = -\frac{4P}{\pi d_0^2} (<0)$$
, 公称ひずみ: $e = \frac{h - h_0}{h} (<0)$ (7)

体積一定: $d_0^2 h_0 = d^2 h$ であるから,

真応力:
$$\sigma = -\frac{P}{A} = -\frac{4P}{\pi d^2} = s(1+e) (<0)$$
, 真ひずみ: $\varepsilon = \ln\left(\frac{h}{h_0}\right) = \ln(1+e) (<0)$ (8)

3.3 荷重 P 変位 (h₀-h) 線図

簡易油圧プレスを用いて 試験片の高さが 1/2 になるまで圧縮し 荷重 P 圧縮量 (h₀ - h) 線図を記録する 工具と試験片の間の摩擦を極力減らすために潤滑材としてグレファイトH (牛脂 75%と黒鉛 25%の混合物)を用いる.

これは圧縮で高さが減少する際,体積一定のため断面積は増大する.その際,摩擦抵抗が あると摩擦仕事もレコーダーの値に影響されてしまい,正しい応力が得られなくなってしま う.そのため,摩擦抵抗を減らすために潤滑材を試材に塗りつけるのである.

3.4 結果の整理の仕方

- (1) 荷重曲線上から適当に8点を選び,s,e,, を計算し,真応力| | 真ひずみ| | 線図(塑性曲線)のグラフをつくる.
- (2) 引張試験同様,両対数方眼紙に | |と| |をプロットして, $|\sigma| = C \cdot |\varepsilon|^n$ で近似した場合の C と n を求める.

4 . 測定結果

4.1 引張試験測定値

図3,図4に測定した荷重 伸び線図を示す.また,引張強さを8として,1~8までの 検査値を図のように適当に定める.

図3 荷重 伸び曲線1

図4 荷重 伸び曲線2

図3,図4および試材の厚さおよび幅を,マイクロメータおよびノギスで測定した結果を 用いて,($\ell - \ell_0$) [mm] および荷重 P [kN] を導出する.

また,得られた($\ell - \ell_0$) [mm] および荷重 P [kN] を用いて,式(1) ~ (4)より s, e, , を導出する.

それら 導出した値を試材ごとに ~ に分けてデータシート形式に示したものが以下の 表1である.

材料1:A1	050P-O	標点間	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.999	試験前板	幅w₀[mm]=	25.24
-		1	2	3	4	5	6	7	8	
	/-/ ₀ [mm]	0.20	0.60	1.00	2.00	4.00	6.00	10.00	15.00	
-	P [kN]	0.74	1.03	1.23	1.57	1.85	1.99	2.12	2.16	•
_	S [MPa]	29	40.8	48.8	62.3	73.4	78.9	84.1	85.7	
-	e	0.0040	0.012	0.0200	0.0400	0.0800	0.120	0.2000	0.3000	•
_	[MPa]	29	41	49.8	64.8	79.2	88.4	101	111	
_		0.0040	0.0119	0.0198	0.0392	0.0770	0.113	0.1823	0.2624	
材料2:A105	50P-1/2H	標点間	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.995	試験前板	幅w₀[mm]=	25.07
_		1	2	3	4	5	6	7	8	
	/-/ ₀ [mm]	0.20	0.40						1.00	
-	P [kN]	3.20	3.20						3.20	•
	S [MPa]	128	128						128	
_	e	0.0040	0.0080						0.0200	
_	[MPa]	130	130						131	
		0.0040	0.0080						0.0198	
材料3∶SI	PCC-B	標点間	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.502	試験前板	幅w₀[mm]=	25.06
		1	2	3	4	5	6	7	8	
	/-/ ₀ [mm]	0.20	1.00	2.00	4.00	6.00	8.00	10.00	14.00	•
_	P [kN]	2.88	3.12	3.49	3.94	4.17	4.28	4.34	4.37	
	S [MPa]	229	248	277	313	331	340	345	347	
_	е	0.0040	0.0200	0.0400	0.0800	0.120	0.160	0.2000	0.2800	
_	[MPa]	230	253	289	338	371	395	414	445	-
		0.0040	0.0198	0.0392	0.0770	0.113	0.148	0.1823	0.2469	
材料4∶SI	PCE-D	標点間	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.501	試験前板	幅w ₀ [mm]=	24.97
		1	2	3	4	5	6	7	8	
	/-/ ₀ [mm]	0.20	1.00	2.00	4.00	6.00	8.00	11.00	14.00	-
	P [kN]	2.00	2.42	2.81	3.26	3.50	3.61	3.70	3.74	
	S [MPa]	160	193	225	261	280	289	296	299	
_	е	0.0040	0.0200	0.0400	0.0800	0.120	0.160	0.2200	0.2800	
_	[MPa]	160	197	234	281	313	335	361	383	-
		0.0040	0.0198	0.0392	0.0770	0.113	0.148	0.1989	0.2469	
材料5∶S	US430	標点間	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.475	試験前板	幅w ₀ [mm]=	24.96
-		1	2	3	4	5	6	7	8	
	/-/ ₀ [mm]	0.20	1.00	2.00	3.00	4.00	6.00	8.00	10.00	
-	P [kN]	3.86	4.37	4.86	5.17	5.38	5.59	5.67	5.68	•
-	S [MPa]	326	369	410	436	454	471	478	479	•
-	e	0.0040	0.0200	0.0400	0.0600	0.0800	0.120	0.160	0.2000	•
-	[MPa]	330	376	426	462	490	528	555	575	•
_		0.0040	0.0198	0.0392	0.0583	0.0770	0.113	0.148	0.1823	

表1 引張試験データシート

材料6:SUS304		標点間距離/0=50.0mm			試験前板	試験前板厚t₀[mm]= 0.475			試験前板幅w ₀ [mm]= 25.04		
		1	2	3	4	5	6	7	8		
	/-/ ₀ [mm]	0.40	1.00	2.00	5.00	9.00	15.00	21.00	28.00		
	P [kN]	3.64	4.00	4.47	5.64	6.75	7.62	8.14	8.50		
	S [MPa]	306	336	376	474	568	641	684	715		
	е	0.0080	0.0200	0.0400	0.100	0.180	0.3000	0.4200	0.5600		
	[MPa]	310	343	391	522	670	833	972	1110		
		0.0080	0.0198	0.0392	0.0953	0.166	0.2624	0.3507	0.4447		
材料7∶C11	100P-1/4H	標点	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.497	試験前板	幅w ₀ [mm]=	25.13	
		1	2	3	4	5	6	7	8		
	/-/ ₀ [mm]	0.20	0.60	1.00	2.00	4.00	6.00	9.00	13.00		
	P [kN]	1.93	2.03	2.13	2.31	2.59	2.75	2.88	2.92		
	S [MPa]	155	163	171	185	207	220	231	234		
	е	0.0040	0.012	0.0200	0.0400	0.0800	0.120	0.180	0.2600		
	[MPa]	160	160	174	192	224	247	272	295		
		0.0040	0.012	0.0198	0.0392	0.0770	0.113	0.166	0.2311		
										-	
材料8∶C26	500P-1/4H	標点	間距離/ ₀ =5	0.0mm	試験前板	厚t₀[mm]=	0.495	試験前板	幅w ₀ [mm]=	25.15	
		1	2	3	4	5	6	7	8		
	/-/ ₀ [mm]	0.20	0.40	1.00	2.00	4.00	8.00	12.00	19.00		

/-/ ₀ [mm]	0.20	0.40	1.00	2.00	4.00	8.00	12.00	19.00
P [kN]	2.83	3.06	3.27	3.68	4.27	5.00	5.38	5.61
S [MPa]	227	246	263	296	343	402	432	451
е	0.0040	0.0080	0.0200	0.0400	0.080	0.160	0.2400	0.3800
[MPa]	230	250	268	307	370	466	536	622
	0.0040	0.0080	0.0198	0.0392	0.0770	0.148	0.2151	0.3221

表1をもとに,引張試験における真ひずみ と真応力 のグラフを作成する.図5に普通 目盛のグラフを,図6に両対数目盛のグラフを示す.(p.8,9)

図6の両対数グラフで,ひずみがある程度大きい範囲で直線状となる.この範囲の近似直線を,Windows Microsoft Excelを用いて求める.累乗近似で近似曲線を求めたものを図6に合わせて記載する.

4.2 圧縮試験測定値

図7に測定した荷重 変位曲線を示す.試験片の高さが1/2となる点を8として,検査点 を8点適当に定める.

図7およびマイクロメータを用いて測定した測定前の試材の高さを用いて,(h-h₀) [mm] および荷重 P [kN] を導出する.

また,得られた($h-h_0$) [mm] および荷重 P [kN] を用いて,式(7), (8)より s, e, 、を 導出する.

それら 導出した値を試材ごとに ~ に分けてデータシート形式に示したものが以下の 表2である.

材料2	: S15C	当初直径d₀[mm]= 9.994			当初高さh₀[mm]= 15.020			試験後高さh ₈ [mm]= 7.46		
		1	2	3	4	5	6	7	8	
	<i>h-h</i> ₀ [mm]	1.196	2.153	3.110	4.067	5.024	5.981	6.938	7.555	
	P [kN]	31.9	43.1	51.9	60.5	70.3	82.1	95.9	106.8	
	S [MPa]	-407	-549	-662	-771	-896	-1050	-1220	-1361	
	е	-0.07963	-0.1433	-0.2071	-0.2708	-0.3345	-0.3982	-0.4619	-0.5030	
	[MPa]	-374	-471	-525	-562	-596	-632	-656	-676.6	
		-0.08298	-0.1547	-0.2320	-0.3158	-0.4072	-0.5078	-0.6197	-0.6992	

表2 圧縮試験データシート

材料3:S25C-R	当初直径
13110.0=00.0	

当初直径do[mm]= 9.993 当初高さho[mm]= 15.033 試験後高さho[mm]= 7.484

	1	2	3	4	5	6	7	8
<i>h-h</i> 0 [mm]	0.472	1.415	2.359	3.303	4.246	5.423	6.605	7.549
P [kN]	42.3	56.5	61.7	66.5	76.7	90.2	108.0	125.4
S [MPa]	-539	-720	-787	-848	-978	-1150	-1377	-1599
е	-0.0314	-0.09413	-0.1569	-0.2197	-0.2824	-0.3607	-0.4394	-0.5022
[MPa]	-522	-653	-663	-662	-702	-735	-772.0	-796.0
	-0.0319	-0.09886	-0.1707	-0.2481	-0.3319	-0.4474	-0.5787	-0.6975

材料4∶S45C	当初直	径d ₀ [mm]=	9.990	当初高	さh₀[mm]=	15.022	試験後高	5さh ₈ [mm]= 7.4
	1	2	3	4	5	6	7	8
<i>h-h</i> 0 [mm]	0.729	1.458	2.430	3.402	4.373	5.345	6.560	7.532
P [kN]	36.0	49.2	60.1	69.9	81.3	93.9	113.2	133.0
S [MPa]	-459	-628	-767	-892	-1040	-1200	-1444	-1697
e	-0.0485	-0.09706	-0.1618	-0.2265	-0.2911	-0.3558	-0.4367	-0.5014
[MPa]	-437	-567	-643	-690	-737	-773	-813.5	-846.0
· · · · ·	-0.0497	-0.1021	-0.1765	-0.2568	-0.3440	-0.4398	-0.5739	-0.6959
材料5∶S25C-A	当初直	径d ₀ [mm]=	9.978	当初高	さh₀[mm]=	15.019	試験後高	5さh ₈ [mm]= 7.4
	1	2	3	4	5	6	7	8
<i>h-h</i> 0 [mm]	0.484	1.453	2.422	3.391	4.360	5.329	6.540	7.548
P [kN]	21.6	38.2	48.5	57.1	65.7	76.7	93.1	110.7
S [MPa]	-276	-489	-620	-730	-840	-981	-1190	-1416
е	-0.0322	-0.09674	-0.1613	-0.2258	-0.2903	-0.3548	-0.4354	-0.5026
[MPa]	-267	-441	-520	-565	-596	-633	-672	-704.2
	-0.0328	-0.1017	-0.1759	-0.2559	-0.3429	-0.4382	-0.5717	-0.6983
材料6∶S <u>US430-F</u>	当初直	径d ₀ [mm]=	9.974	当初高	さh₀[mm]=	15.004	試験後高	5さh ₈ [mm]= 7.4
	1	2	3	4	5	6	7	8
<i>h-h</i> 0 [mm]	0.773	1.714	2.704	3.622	4.588	5.554	6.520	7.532
P [kN]	47.1	52.0	57.9	64.7	73.8	85.5	99.9	117.9
S [MPa]	-603	-666	-741	-828	-945	-1090	-1280	-1509
e	-0.0515	-0.1142	-0.1802	-0.2414	-0.3058	-0.3702	-0.4346	-0.5020
[MPa]	-572	-590	-608	-628	-656	-687	-724	-751.5
	-0.0529	-0.1213	-0.1987	-0.2763	-0.3650	-0.4623	-0.5701	-0.6972
才料7∶C1100BE-F	当初直	径d₀[mm]=	9.977	当初高	さh₀[mm]=	14.994	試験後高	うさh ₈ [mm]= 7.4
	1	2	3	4	5	6	7	8
<i>h-h</i> 0 [mm]	0.456	1.176	2.136	3.096	4.056	5.256	6.456	7.560
P [kN]	28.4	30.8	33.2	35.8	39.2	45.3	53.4	63.7
S [MPa]	-363	-394	-425	-458	-501	-579	-683	-815
e	-0.0304	-0.07843	-0.1425	-0.2065	-0.2705	-0.3505	-0.4306	-0.5042
[MPa]	-352	-363	-364	-363	-366	-376	-389	-404
	-0.0309	-0.08168	-0.1537	-0.2313	-0.3154	-0.4316	-0.5631	-0.7016
才料8∶C1 <u>100BE-O</u>	当初直	径d ₀ [mm]=	9.982	当初高	さh₀[mm]=	15.033	試験後高	うさh ₈ [mm]= 7.4
	1	2	3	4	5	6	7	8
$h-h_0$ [mm]	0.414	1.197	2.174	3.151	4.129	5.350	6.572	7.598
P [kN1	6.7	13.2	20.8	27.0	32.4	40.4	49.8	58.8
S [MPa]	-86	-169	-266	-345	-414	-516	-636	-751
	-0.0275	-0.07962	-0.1446	-0.2096	-0.2747	-0.3559	-0.4372	-0.5054
6	-83	-155	-227	-273	-300	-333	-358	-372
[MPa]	-00					0.4000		
<u>h-h₀</u> [mm] P [kN] S [MPa]	(-().414 6.7 -86).0275 -83	0.414 1.197 6.7 13.2 -86 -169 0.0275 -0.07962 -83 -155	0.414 1.197 2.174 6.7 13.2 20.8 -86 -169 -266 0.0275 -0.07962 -0.1446 -83 -155 -227	0.414 1.197 2.174 3.151 6.7 13.2 20.8 27.0 -86 -169 -266 -345 0.0275 -0.07962 -0.1446 -0.2096 -83 -155 -227 -273	0.414 1.197 2.174 3.151 4.129 6.7 13.2 20.8 27.0 32.4 -86 -169 -266 -345 -414 0.0275 -0.07962 -0.1446 -0.2096 -0.2747 -83 -155 -227 -273 -300	0.414 1.197 2.174 3.151 4.129 5.350 6.7 13.2 20.8 27.0 32.4 40.4 -86 -169 -266 -345 -414 -516 0.0275 -0.07962 -0.1446 -0.2096 -0.2747 -0.3559 -83 -155 -227 -273 -300 -333	0.414 1.197 2.174 3.151 4.129 5.350 6.572 6.7 13.2 20.8 27.0 32.4 40.4 49.8 -86 -169 -266 -345 -414 -516 -636 0.0275 -0.07962 -0.1446 -0.2096 -0.2747 -0.3559 -0.4372 -83 -155 -227 -273 -300 -333 -358

表 2 をもとに,圧縮試験における真ひずみ| |と真応力| |のグラフを作成する.図 8 に普通目盛のグラフを,図9に両対数目盛のグラフを示す.(p.12,13)

図9の両対数グラフで,引張試験と同様にひずみがある程度大きい範囲で直線状となる. この範囲の近似直線を,Windows Microsoft Excelを用いて求める.累乗近似で近似曲線を 求めたものを図9に合わせて記載する.

4.3 結果のまとめ

(1) 引張試験特性値

引張試験に用いた板材 8 種類について, 初期降伏点 s[MPa]または耐力 0.2[MPa], 引張 強さ B[MPa], 一様伸び eu[%], 破断伸び [%]についてまとめる.

まず,降伏点を求める.図3,図4(p.5)の荷重 伸び曲線より降伏点荷重を読み取り, 4.1節同様に式(1)~(4)を用いることにより降伏点が得られる.降伏点の導出は表3に示 す.

_						
	試材	降伏点荷重P _s [kN]	公称応力S _s [MPa]	公称ひずみe _s	降伏点(耐力)	_s [MPa]
_	A1050P-O	0.61	24	0.002	24	
A	1050P-1/2H	3.19	128	0.0044	128	
	SPCC-B	2.78	221	0.002	221	
	SPCE-D	1.82	145	0.002	146	
	SUS430	3.67	310	0.002	310	
	SUS304	3.39	285	0.002	286	
C	C1100P-1/4H	1.83	147	0.002	147	
C	2600P-1/4H	2.89	232	0 0040	233	

表3 降伏点 。の導出

また,引張強さは表1の8番の値を用いる.したがって,一様伸びも表1・8番の公称ひずみの値を用いる.

破断長さは, p.5・図3, 図4より破断点を読み取り, 公称ひずみの式を用いて破断伸び を求める.

それぞれ,初期降伏点 s[MPa]または耐力 0.2[MPa],引張強さ в[MPa],一様伸び eu[%], 破断伸び [%]についてまとめたものを,表4に示す.

ただし, SUS304 については, 一定量引っ張っても破断しなかったため, 破断長さを測定 していない.

試材	降伏点 。[MPa]	引張強さ _B [MPa]	ー様伸びe _u [%]	破断長さ/-/ ₀ [mm]	破断伸び [%]
A1050P-O	24	111	30.00	21.94	43.88
A1050P-1/2H	128	131	2.00	6.30	12.6
SPCC-B	221	445	28.00	22.42	44.84
SPCE-D	146	383	28.00	26.80	53.60
SUS430	310	575	20.00	15.66	31.32
SUS304	286	715	56.00		
C1100P-1/4H	147	295	26.00	19.20	38.40
C2600P-1/4H	233	622	38.00	21.20	42.40

表4 引張試験特性值表

(2) 近似式結果

図6(p.9)および図9(p.13)の対数グラフにおいて描いた近似直線の塑性係数Cおよび加工硬化指数nの値を表5(p.15)にまとめる.また,近似式の用いることのできるの範囲についても同時に記載する.

ただし,引張試験においては上限値・下限値を定めることができるが,圧縮試験について は高さ 1/2 までの塑性変形曲線しか得られていないので,上限値は今回の実験では定めるこ とはできない.

また,引張試験の近似式におけるの上限値は試材が引張強さを記録した際のひずみ量であるため,表1の測定値を使用した.

試材	塑性係数 C[MPa]	加工硬化指数 n	ひす	もの範囲
A1050P-O	164	0.285	0.04	0.26
A1050P-1/2H	138	0.0130	0.008	0.020
SPCC-B	607	0.226	0.08	0.25
SPCE-D	554	0.264	0.02	0.25
SUS430	802	0.194	0.02	0.18
SUS304	1630	0.490	0.09	0.44
C1100P-1/4H	419	0.242	0.03	0.23
C2600P-1/4H	935	0.362	0.07	0.32
A1100BE-F	145	0.0400	0.06	
S15C-R	739	0.238	0.15	
S25C-R	850	0.178	0.25	
S45C-R	910	0.201	0.15	
S25C-A	761	0.222	0.15	
SUS430-F	806	0.198	0.28	
C1100BE-F	420	0.123	0.32	
C1100BE-O	417	0.289	0.23	

表5 近似式・塑性係数 C[MPa],加工硬化指数 n およびひずみ の範囲

4.4 測定結果の考察

まず,炭素鋼どうしを比較すると,図6(p.9)や図9(p.13)の結果を見ても分かるように,炭素含有量の多い鋼材の方が降伏点や引張強さが大きいことが伺える.これは,金属 組織によるもので,とくに焼きなましを行うと鋼ではフェライトとパーライトが析出するの で機械的性質の違いが分かりやすい.

鋼を構成する各組織の機械的性質を表6に示す.フェライトは強度が低いが,延性は大きい.セメンタイトは非常に強度が強いが,延性がほとんどない.フェライトとセメンタイトからなるパーライトは両者の中間的な性質を持っている.

したがって、炭素鋼では炭素含有量に比例してセメンタイト相が増加するので炭素含有量 の多い鋼ほど降伏点および引張強さは大きい.

また,図9を見ると,焼きなまし前の炭素鋼は焼きなましたものに比べ強度が小さい.熱 処理を施したものとそうでないものとで機械的性質が異なることが伺える.

			フェライト	セメンタイト	パーライト	
æ	\$	(H _B)	90	600~700	. 200	
引張]	t ð	(kg/mm*)	30	700	90	
fŧ	$\mathcal{U}^!$	[%]	40	0	15	

表6 鋼を構成する各相の機械的性質¹⁾

次にステンレス鋼を考える.フェライト系ステンレス鋼である SUS430 は, Cr を 16~ 18%含有するため高温域でオーステナイト領域が存在せず,標準組織がフェライト組織と なる.それに対し, SUS304 などのオーステナイト系ステンレス鋼は高 Cr 鋼に Ni が加え られており,オーステナイトのみの組織となる.

この組織の違いが伸びや引張強さに関係し,図6および表4を見ても分かるように,オー ステナイト系はどちらの性質にも優れており 特に引張強さが表すように靱性に富んでいる. ただし,補足として付け加えておくが,オーステナイト系ステンレスは溶接部が粒界腐食 や応力腐食割れを起こしやすいのに対し,フェライト系は応力腐食割れを起こしにくく,高 い耐食性を示す.また,SUS430はオーステナイト系ステンレス鋼には機械的性質で劣って いるものの,図9で炭素鋼と真応力 真ひずみ線図を比較すると S25C - R よりは劣るが S15C-R よりは強いことが分かる.

また,銅合金では,ほぼ純銅に近いC1100に比べ,Znを加えたC2600銅合金(黄銅)のほうが伸び,降伏点および引張強さの調べた全ての性質においてはるかに優れていることが伺える.

全体を通して,焼きなましは材料を軟化させる傾向があることが分かる.図6の,のアルミで比較すると,A1050P-1/2H は冷間圧延率などによって破断伸びが1/2 になるように調質されてはいるが,ひずみが小さい部分で両者を比較するとA1050P-0 は真ひずみに対する真応力がA1050P-1/2H に比べ小さく,同様のことが図9のC1100-F とC1100BE-0でも伺える.

さて、引張試験で荷重が最大となった時点の真ひずみ uと表5のn値とを比べてみよう. 二つを並べて書くと表7のようになるなお最大荷重時の真ひずみは表1の8番の真ひずみ の値を用いる.

表7をみると,各値が10%ほどの差で一致している.したがって,真応力 真ひずみの 累乗近似曲線が得られれば,最大荷重時の真ひずみ が得られ,さらに得られた の値を近 似式に代入すれば,引張強さ Bも得ることができる.

	取べ何主的の共しずのと	
試材	最大荷重時の真ひずみ 」	加工硬化指数 n
A1050P-O	0.2624	0.285
A1050P-1/2H	0.0198	0.0130
SPCC-B	0.2469	0.226
SPCE-D	0.2469	0.264
SUS430	0.1823	0.194
SUS304	0.4447	0.490
C1100P-1/4H	0.2311	0.242
C2600P-1/4H	0.3221	0.362

表7 最大荷重時の真ひずみと加工硬化指数

5 . 考察

引張試験では荷重の増加率が徐々に減少して極大値となったのち,荷重は減少に転じる. これは,応力の式を考えると,

$$\frac{P}{A} = \sigma$$

$$\Leftrightarrow \quad P = A \cdot \sigma$$

$$\Leftrightarrow \quad dP = dA \cdot \sigma + A \cdot d\sigma$$

体積は一定なので,引張りで伸びが発生すれば断面積は減少するため dA<0 .

したがって、塑性変形初期段階では加工硬化によるの増加率に比べ断面積の減少率が小 さく、荷重は増加する.しかし、さらに引張りが続き断面積の減少率がさらに大きくなると、 やがて加工硬化による荷重の増加率と断面積の減少率による荷重の減少率が釣り合い,引張 荷重は極値を迎える.さらに引っ張ると、断面積減少の影響が顕著となりくびれが発生し、 最終的に試材は破断することになる.

それに対し, 圧縮試験では塑性変形により断面積は増加するためdA > 0である. もちろん 圧縮の際も加工硬化は存在する. $d\sigma > 0$.

したがって, $dA \cdot \sigma > 0$, $A \cdot d\sigma > 0$ となるので, 当然 dP > 0で, 荷重の変化は常に増加方向であるため, くびれは発生せず破断もしない.

では,引張試験の結果より降伏点(耐力)や引張強さ,一様伸びを求めてみよう.

すでに前述の4.4節において引張強さ в の求め方を示しているので,それに従うと, 表8のように計算できる.また一様伸びは公称応力を用いる.用いる式は次式である.

 $e_{\mu} = \exp(\varepsilon_{\mu}) - 1$

また,降伏点(耐力) sを求めるには, =0.2%を用いて,この値を近似式に代入する ことにより求めることにしよう.むろん,の値が小さいときには近似式が成り立たないが, 概略値を知るためとしてこの方法を用いる.

試材	n =	引張強さ _B [MPa]	ー様伸び e _u [%]	降伏点(耐力) _s [MPa]
A1100BE-F	0.0400	127	4.08	113
S15C-R	0.238	525	26.9	168
S25C-R	0.178	625	19.5	281
S45C-R	0.201	659	22.3	261
S25C-A	0.222	545	24.9	192
SUS430-F	0.198	585	21.9	235
C1100BE-F	0.123	325	13.1	196
C1100BE-O	0.289	291	33.5	69

表8 圧縮試験結果からの降伏点,引張強さおよび一様伸びの導出

圧縮試験と引張試験の両方に用いた SUS430 で比較する.表8と表4(p.14)の SUS430 の引張強さと一様伸びを比較すると、ほぼ同値である.しかし、降伏点は値が異なる.やはり近似式で降伏点を求めるのには無理があったようだ.

近似式から降伏点(耐力を)求めることが不可能だとわかったので,別の方法を考えてみよう.

上図の図8bはp.12図8と同様の図であるが,これを用いて降伏点を求めてみる. 図8bの真応力 真ひずみ線図を, =0方向に延長して 軸との交点を降伏点とする.

図より読み取った降伏点の値は表9のとおりである。

しかしながら,各試材の降伏点の値はわからないため,近似式の値よりは正確らしいとしかいえないのが現状である.

試材	降伏点(耐力)	_s [MPa]
A1100BE-F	130	
S15C-R	263	
S25C-R	460	
S45C-R	314	
S25C-A	185	
SUS430-F	558	
C1100BE-F	346	
C1100BE-O	47	

表9 図から読み取る圧縮試験試材の降伏点

圧縮試験と引張試験はたがいに逆向きに負荷するものだが、延性のある材料では荷重軸と 45°をなす面に,圧縮の場合も引張の場合も最大せん断応力が生じ,これによってすべり 変形が発生する.したがって圧縮降伏応力は同じ材料の引張りせん断応力にほぼ等しい.

しかし,これらの関係は等方体とみなすことのできる材料の場合であり,特別な異方性を 持つ材料や,バウシンガー効果が認められる材料では引張りと圧縮では降伏点が異なる.

参考 バウシンガー効果

図 10 で OABC は単純な引張による応力 ひずみ線図である.この材料の単純な圧縮降 伏応力は - yで引張降伏応力と絶対値が等しい.さて,Bまで引張変形させてから除荷し (B O'),直ちに再び引張ると O'BC のごとく変形する.すなわち O'B はほとんど弾性的 な変化で,B 以降は本来の応力 ひずみ線図にほとんど一致することになる.もし,B から 除荷後,圧縮力を加えていくと,その応力 ひずみ線図は O'DEF となる.すなわち,この ときの降伏点は,f(B 点の応力)より小さく,また yよりも小さい絶対値を示す.f が大きい場合,BD"F"のごとく,荷重中に直線から外れることがある.曲線 O'D'F'は線 O'DEF を 180°反転して描いたものである.

この例のように,まずある方向に負荷し,次に逆向きに再負荷すると,後者の降伏点は著 しく低下する現象をバウシンガー効果という.

図10 バウジンガー効果

6 . 結言

引張試験,圧縮試験の両試験を通して,各金属材料の加工硬化特性を理解することができた.具体的には,図6(p.9)および図9(p.13)の荷重 伸び線図をみると,図6のA1050P-1/2Hに比べてA1050P-Oの方が,図9ではC1100BE-Fに比べC1100BE-Oの方が低ひずみ状態での荷重量つまり加工硬化量が小さいことが伺える.逆を言うと,図9において熱処理を行わないA1100BE-F,SUS430-F,C1100BE-Fの3金属は低ひずみ状態でも高い強度を持ち,降伏点も高いと予想がつく.

また銅と黄銅は破断伸びが 1/4 の材料を用いた測定であったが,それでも高い靭性をもつ. また,よく見かけるステンレスの代表とも言えるオーステナイト系ステンレス鋼の SUS304 も高い靭性と高い引張強度を持つことがわかった.一方,フェライト系ステンレス鋼の SUS430 は腐食に対する耐性は強いかもしれないが,機械的性質に限ればオーステナイト系 に伸びも引張強さも及ばず,機械構造鋼材の S15C や S25C とほぼ同等の伸びと引張強さで ある.

アルミは今回用いた試材が純アルミ系の A1050 や A1100 であったこともあるが,降伏点 および引張強さは極めて低く,また伸びも取立てて大きくないことがわかった.

冷間圧延材についてはとくに特徴は見られない .今回引張試験を行った金属の中では特に 強度があるわけでもなく伸びも平均的であった .

全体を通しては,破断時のくびれは確認できず,突然破断した様子であった.

最後に圧縮試験について.

図 11 は圧縮による試験片の変形状況を示す.端面は加圧板との摩擦力のために変形が拘束されて,試験片各部の変形量が不均一になる.そのため真応力の測定は容易ではなく,それを回避するためには径に対して高さを大きくすることが有効であるが,高さを高くすると座屈を起こしやすく困難を極める.

今回の測定でも圧縮後の試材はタル状に歪んでいることが確認でき、測定値にいくらか影響が出たものと思われる.

図11 圧縮による変形

参考文献

- 1)青木顕一郎・堀内良 編著 基礎機械材料学(2003) 朝倉書店 p130~140, p149~170
- 2)黒木剛司郎・大森官次郎 共著 金属の強度と破壊(1977) 森北出版株式会社 p100
- 3) 須藤一 著 材料試験法(1978) 内田老鶴圃新社 p57
- 4)金属材料データブック(2000) 日本規格協会